These are the sources and citations used to research DM - CA2 - Text Mining. This bibliography was generated on Cite This For Me on
In-text: (Adriaansen, 2021)
Your Bibliography: Adriaansen, R., 2021. Scraping all reviews of a movie from Rotten Tomato using soup. [online] Stack Overflow. Available at: <https://stackoverflow.com/questions/69963743/scraping-all-reviews-of-a-movie-from-rotten-tomato-using-soup> [Accessed 20 December 2021].
In-text: (Dickenson, 2020)
Your Bibliography: Dickenson, B., 2020. Generate Meaningful Word Clouds in Python. [online] towardsdatascience.com. Available at: <https://towardsdatascience.com/generate-meaningful-word-clouds-in-python-5b85f5668eeb> [Accessed 20 December 2021].
In-text: (Hensinger, Flaounas and Cristianini, 2012)
Your Bibliography: Hensinger, E., Flaounas, I. and Cristianini, N., 2012. The Appeal of Politics on Online Readers. [online] Blogs.oii.ox.ac.uk. Available at: <http://blogs.oii.ox.ac.uk/ipp-conference/sites/ipp/files/documents/HensingerFlaounasCristianini_Oxford2012.pdf> [Accessed 20 December 2021].
In-text: (Schaible, Carevic, Hopt and Zapilko, 2015)
Your Bibliography: Schaible, J., Carevic, Z., Hopt, O. and Zapilko, B., 2015. Utilizing the Open Movie Database API for Predicting the Review Class of Movies. [online] Citeseerx.ist.psu.edu. Available at: <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1071.6147&rep=rep1&type=pdf> [Accessed 20 December 2021].
Given a set of Rotten tomatoes annotated movie reviews, The goal of the project is to familiarize with different machine learning algorithms to predict the sentiment of unknown reviews from the improved corpus that has the additional sentiment information of all sub-phrases.
In-text: (Sorostinean, Sana, Mohamed and Targhi, 2017)
Your Bibliography: Sorostinean, M., Sana, K., Mohamed, M. and Targhi, A., 2017. Sentiment Analysis on Movie Reviews. Journal Agroparistech., [online] Available at: <http://www.agroparistech.fr/ufr-info/membres/cornuejols/Teaching/Master-AIC/PROJETS-M2-AIC/PROJETS-2016-2017/main(Amal%20Targhi-%20Mihaela%20SOROSTINEAN-%20Katia%20Sana-Mohamed%20Mohamed).pdf> [Accessed 20 December 2021].
10,587 students joined last month!