These are the sources and citations used to research Data and AI. This bibliography was generated on Cite This For Me on

  • Website

    Accenture

    How to create unparalleled workstation security | Accenture

    2021 - Accenture

    In-text: (Accenture, 2021)

    Your Bibliography: Accenture, 2021. How to create unparalleled workstation security | Accenture. [online] Accenture.com. Available at: <https://www.accenture.com/us-en/blogs/how-accenture-does-it/how-to-create-unparalleled-workstation-security> [Accessed 26 August 2022].

  • Journal

    Alippi, C., Disabato, S. and Roveri, M.

    Moving Convolutional Neural Networks to Embedded Systems: The AlexNet and VGG-16 Case

    2018 - 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN)

    In-text: (Alippi, Disabato and Roveri, 2018)

    Your Bibliography: Alippi, C., Disabato, S. and Roveri, M., 2018. Moving Convolutional Neural Networks to Embedded Systems: The AlexNet and VGG-16 Case. 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), [online] pp.212-223. Available at: <https://ieeexplore.ieee.org/abstract/document/8480072> [Accessed 26 August 2022].

  • Website

    Brownlee, J.

    A Gentle Introduction to Batch Normalization for Deep Neural Networks

    2019 - Machine Learning Mastery

    In-text: (Brownlee, 2019)

    Your Bibliography: Brownlee, J., 2019. A Gentle Introduction to Batch Normalization for Deep Neural Networks. [online] Machine Learning Mastery. Available at: <https://machinelearningmastery.com/batch-normalization-for-training-of-deep-neural-networks/> [Accessed 28 August 2022].

  • Website

    Chatterjee, S.

    Deep learning unbalanced training data?Solve it like this.

    2018 - Towards Data Science

    In-text: (Chatterjee, 2018)

    Your Bibliography: Chatterjee, S., 2018. Deep learning unbalanced training data?Solve it like this.. [online] Towards Data Science. Available at: <https://towardsdatascience.com/deep-learning-unbalanced-training-data-solve-it-like-this-6c528e9efea6> [Accessed 28 August 2022].

  • Journal

    Chen, Y., Deng, J. and Wang, T.

    Skin Cancer Diagnosis and Medical Service System Based on Deep Learning Models

    2022 - 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI)

    In-text: (Chen, Deng and Wang, 2022)

    Your Bibliography: Chen, Y., Deng, J. and Wang, T., 2022. Skin Cancer Diagnosis and Medical Service System Based on Deep Learning Models. 3rd International Conference on Electronic Communication and Artificial Intelligence (IWECAI), [online] pp.367-371. Available at: <https://ieeexplore.ieee.org/abstract/document/9750739> [Accessed 28 August 2022].

  • Website

    Gupta, A.

    A Comprehensive Guide on Deep Learning Optimizers

    2021 - Analytics Vidhya

    In-text: (Gupta, 2021)

    Your Bibliography: Gupta, A., 2021. A Comprehensive Guide on Deep Learning Optimizers. [online] Analytics Vidhya. Available at: <https://www.analyticsvidhya.com/blog/2021/10/a-comprehensive-guide-on-deep-learning-optimizers/> [Accessed 28 August 2022].

  • Journal

    Han, D., Liu, Q. and Fan, W.

    A new image classification method using CNN transfer learning and web data augmentation

    2018 - Expert Systems with Applications

    In-text: (Han, Liu and Fan, 2018)

    Your Bibliography: Han, D., Liu, Q. and Fan, W., 2018. A new image classification method using CNN transfer learning and web data augmentation. Expert Systems with Applications, [online] 95, pp.43-56. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0957417417307844> [Accessed 27 August 2022].

  • Journal

    Jogin, M., Madhulika, M., Divya, G., Meghana, R. and Apoorva, S.

    Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning

    2018 - 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information &amp; Communication Technology (RTEICT)

    In-text: (Jogin et al., 2018)

    Your Bibliography: Jogin, M., Madhulika, M., Divya, G., Meghana, R. and Apoorva, S., 2018. Feature Extraction using Convolution Neural Networks (CNN) and Deep Learning. 2018 3rd IEEE International Conference on Recent Trends in Electronics, Information &amp; Communication Technology (RTEICT), [online] Available at: <https://ieeexplore.ieee.org/abstract/document/9012507/citations?tabFilter=papers#citations> [Accessed 26 August 2022].

  • Journal

    Liu, P., Yokoyama, T., Fu, W. and Yamamoto, M.

    Statistical Analysis of Medium‐Scale Traveling Ionospheric Disturbances Over Japan Based on Deep Learning Instance Segmentation

    2022 - Space Weather

    In-text: (Liu, Yokoyama, Fu and Yamamoto, 2022)

    Your Bibliography: Liu, P., Yokoyama, T., Fu, W. and Yamamoto, M., 2022. Statistical Analysis of Medium‐Scale Traveling Ionospheric Disturbances Over Japan Based on Deep Learning Instance Segmentation. Space Weather, [online] 20(7). Available at: <https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2022SW003151> [Accessed 28 August 2022].

  • Journal

    Luo, C., Li, X., Wang, L., He, J., Li, D. and Zhou, J.

    How Does the Data set Affect CNN-based Image Classification Performance?

    2018 - 2018 5th International Conference on Systems and Informatics (ICSAI)

    In-text: (Luo et al., 2018)

    Your Bibliography: Luo, C., Li, X., Wang, L., He, J., Li, D. and Zhou, J., 2018. How Does the Data set Affect CNN-based Image Classification Performance?. 2018 5th International Conference on Systems and Informatics (ICSAI), [online] pp.361-366. Available at: <https://ieeexplore.ieee.org/abstract/document/8599448> [Accessed 26 August 2022].

  • Journal

    Montserrat, D. M., Lin, Q., Allebach, J. and Delp, E. J.

    Training Object Detection And Recognition CNN Models Using Data Augmentation

    2017 - Electronic Imaging

    In-text: (Montserrat, Lin, Allebach and Delp, 2017)

    Your Bibliography: Montserrat, D., Lin, Q., Allebach, J. and Delp, E., 2017. Training Object Detection And Recognition CNN Models Using Data Augmentation. Electronic Imaging, [online] 29(10), pp.27-36. Available at: <https://www.semanticscholar.org/paper/Training-Object-Detection-And-Recognition-CNN-Using-Montserrat-Lin/a3f4a5ba0777e2e0386d6df6aa23399e7e14a202> [Accessed 29 August 2022].

  • Journal

    Panthakkan, A., Anzar, S., Mansoori, S. A. and Ahmad, H. A.

    Accurate Prediction of COVID-19 (+) Using AI Deep VGG16 Model

    2020 - 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS)

    In-text: (Panthakkan, Anzar, Mansoori and Ahmad, 2020)

    Your Bibliography: Panthakkan, A., Anzar, S., Mansoori, S. and Ahmad, H., 2020. Accurate Prediction of COVID-19 (+) Using AI Deep VGG16 Model. 2020 3rd International Conference on Signal Processing and Information Security (ICSPIS), [online] pp.1-4. Available at: <https://ieeexplore.ieee.org/abstract/document/9340145> [Accessed 30 August 2022].

  • Journal

    Raghu, S., Sriraam, N., Temel, Y., Rao, S. V. and Kubben, P. L.

    EEG based multi-class seizure type classification using convolutional neural network and transfer learning

    2020 - Neural Networks

    In-text: (Raghu et al., 2020)

    Your Bibliography: Raghu, S., Sriraam, N., Temel, Y., Rao, S. and Kubben, P., 2020. EEG based multi-class seizure type classification using convolutional neural network and transfer learning. Neural Networks, [online] 124, pp.202-212. Available at: <https://www.sciencedirect.com/science/article/abs/pii/S0893608020300198> [Accessed 28 August 2022].

  • Journal

    Tammina, S.

    Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images

    2019 - International Journal of Scientific and Research Publications (IJSRP)

    In-text: (Tammina, 2019)

    Your Bibliography: Tammina, S., 2019. Transfer learning using VGG-16 with Deep Convolutional Neural Network for Classifying Images. International Journal of Scientific and Research Publications (IJSRP), [online] 9(10), p.p9420. Available at: <https://www.researchgate.net/profile/Srikanth-Tammina/publication/337105858_Transfer_learning_using_VGG-16_with_Deep_Convolutional_Neural_Network_for_Classifying_Images/links/5dc94c3ca6fdcc57503e6ad9/Transfer-learning-using-VGG-16-with-Deep-Convolutional-Neural-Network-for-Classifying-Images.pdf?_sg%5B0%5D=started_experiment_milestone&origin=journalDetail> [Accessed 29 August 2022].

  • Website

    TensorFlow

    tf.image.flip_left_right  |  TensorFlow v2.9.1

    2022 - TensorFlow

    In-text: (TensorFlow, 2022)

    Your Bibliography: TensorFlow, 2022. tf.image.flip_left_right  |  TensorFlow v2.9.1. [online] TensorFlow.com. Available at: <https://www.tensorflow.org/api_docs/python/tf/image/flip_left_right> [Accessed 27 August 2022].

  • Website

    TensorFlow

    tf.keras.layers.RandomCrop  |  TensorFlow v2.9.1

    2022 - TensorFlow

    In-text: (TensorFlow, 2022)

    Your Bibliography: TensorFlow, 2022. tf.keras.layers.RandomCrop  |  TensorFlow v2.9.1. [online] TensorFlow. Available at: <https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomCrop> [Accessed 27 August 2022].

  • Website

    TensorFlow

    tf.keras.layers.RandomRotation  |  TensorFlow v2.9.1

    2022 - TensorFlow

    In-text: (TensorFlow, 2022)

    Your Bibliography: TensorFlow, 2022. tf.keras.layers.RandomRotation  |  TensorFlow v2.9.1. [online] TensorFlow.com. Available at: <https://www.tensorflow.org/api_docs/python/tf/keras/layers/RandomRotation> [Accessed 27 August 2022].

  • Journal

    Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F. and Leprevost, F.

    Reducing Overfitting and Improving Generalization in Training Convolutional Neural Network (CNN) under Limited Sample Sizes in Image Recognition

    2020 - 2020 - 5th International Conference on Information Technology (InCIT)

    In-text: (Thanapol et al., 2020)

    Your Bibliography: Thanapol, P., Lavangnananda, K., Bouvry, P., Pinel, F. and Leprevost, F., 2020. Reducing Overfitting and Improving Generalization in Training Convolutional Neural Network (CNN) under Limited Sample Sizes in Image Recognition. 2020 - 5th International Conference on Information Technology (InCIT), [online] pp.300-305. Available at: <https://ieeexplore.ieee.org/abstract/document/9310787> [Accessed 28 August 2022].

  • Journal

    Yang, H., Ni, J., Gao, J., Han, Z. and Luan, T.

    A novel method for peanut variety identification and classification by Improved VGG16

    2021 - Scientific Reports

    In-text: (Yang et al., 2021)

    Your Bibliography: Yang, H., Ni, J., Gao, J., Han, Z. and Luan, T., 2021. A novel method for peanut variety identification and classification by Improved VGG16. Scientific Reports, [online] 11(1). Available at: <https://www.researchgate.net/publication/353679755_A_novel_method_for_peanut_variety_identification_and_classification_by_Improved_VGG16> [Accessed 30 August 2022].

  • Website

    Zhang, J.

    Optimisation Algorithm — Adaptive Moment Estimation(Adam)

    2020 - Towards Data Science

    In-text: (Zhang, 2020)

    Your Bibliography: Zhang, J., 2020. Optimisation Algorithm — Adaptive Moment Estimation(Adam). [online] Towards Data Science. Available at: <https://towardsdatascience.com/optimisation-algorithm-adaptive-moment-estimation-adam-92144d75e232> [Accessed 28 August 2022].

Click here to start building your own bibliography
Keep on Citing!
Cite This For Me:
The Easiest Tool to Create your Bibliographies Online
Join Us!

Save Time and Improve Your Marks with Cite This For Me

10,587 students joined last month!

  • ✔ Save your bibliographies for longer
  • ✔ Quick and accurate citation program
  • ✔ Save time when referencing
  • ✔ Make your student life easy and fun
  • ✔ Pay only once with our Forever plan
  • ✔ Use plagiarism checker
  • ✔ Create and edit multiple bibliographies
Join